Effects of Ischemic Post-Conditioning on the Expressions of LC3-II and Beclin-1 in the Hippocampus of Rats after Cerebral Ischemia and Reperfusion

Author:

Huang Liquan1,Liu Zizhuo2,Wang Lingcong1

Affiliation:

1. Department ICU of the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China

2. Department emergency of Tianjin medical university general hospital, Tianjin, China

Abstract

AbstractObjectiveTo investigate the effects of postconditioning ischemia on the expressions of the hippocampus neuron autophagy-related proteins LC3-II and Beclin-1 in rats following cerebral ischemia reperfusion.MethodsA total of 128 male Sprague–Dawley rats were randomly divided into 4 groups: control, cerebral ischemia-reperfusion (IR), cerebral ischemia post-conditioning group (IP), and PI3K/Akt inhibitor (LY294002). The rat cerebral ischemia model was established by the improved Pulsinelli four vessel occlusion method. The durations across the platform and escape latent period were recorded using the water maze experiment. The changes in cell morphology and the number of surviving hippocampal neurons were detected by hematoxylin-eosin (HE) staining. The cells with Beclin-1 and LC3-II in the hippocampal region were detected by immunohistochemical staining and Western blotting.ResultsWhen compared with the IR at 48 and 72 h, the number of platform passes increased and the escape latency time was shortened. Consequently, the HE staining detected positive cells with LC3-II and Beclin-1 increased in number at each time point in immunohistochemistry and the expressions of the LC3-II and Beclin-1 proteins were improved in the IP (P < 0.05).ConclusionsCerebral ischemic post-conditioning promoted the expressions of autophagy-related proteins LC3-II and Beclin-1 while relieving the injuries caused by cerebral ischemia reperfusion.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3