Expression of psbA1 gene in Synechocystis sp. PCC 6803 is influenced by CO2

Author:

Chiş Ciprian12,Carmel Dalton13,Chiş luliana12,Ardelean Aurel3,Dragos Nicolae2,Sicora Cosmin1

Affiliation:

1. Biological Research Centre, Jibou, Romania

2. Babeş-Bolyai University, Cluj-Napoca, Romania

3. Western University ”Vasile Goldis”, Arad, Romania

Abstract

AbstractIn almost all cyanobacteria a small gene family encodes the photosystem II reaction center D1 proteins that play vital roles in the cell. Recently, several types of this protein were functionally characterised and the conditions for their transcript regulation were identified. One of the D1-encoding genes previously believed to be silent is induced by microaerobic conditions. This gene was first described in Synechocystis sp. PCC 6803 as psbA1 encoding the D1 isoform. When Synechocystis cells are shifted from high to ambient level CO2 we recorded an increase in gene expression, similar, but to a lesser extent, to microaerobic conditions. When synthetic air is used to remove the ambient CO2, the induction of the gene is absent. We documented for the first time that expression of a psbA gene is regulated by the inorganic carbon status of the cell. Our conclusion is that both CO2 and microaerobic conditions are independently influencing the expression of psbA1 gene in Synechocystis sp. PCC 6803. Hence, it is crucial to understand the mechanisms of regulation and function of D1 proteins as it could be used for future bio-technological applications as a virtual tool-box for modulating the function of PSII.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference18 articles.

1. Genome evolution in cyanobacteria: The stable core and the variable shell;PNAS.,2008

2. UV-B radiation-induced donor- and acceptor-side modifications of photosystem II in the cyanobacterium Synechocystis sp.;PCC 6803, Biochemistry,1999

3. When did oxygenic photosynthesis evolve?, Phil. Trans;R. Soc. B.,2008

4. Alternate copies of D1 are used by cyanobacteria under different environmental conditions, Photosynth;Res.,2012

5. Cyanobacterial psbA gene family: optimization of oxygenic photosynthesis, Cell. Mol;Life Sci.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3