Sustained knock down of PPARγ and bFGF presentation in collagen hydrogels promote MSC osteogenesis

Author:

Shao Shan,Cui Enmei,Xue Huimin,Huang Haiyun,Liu Gangli

Abstract

AbstractCollagen hydrogels were considered as favourable scaffolding for tissue engineering. It was demonstrated that cytokines and siRNAs could be efficiently retained by collagen hydrogels for controlled release thereby enhancing their bioactivities. Basic fibroblast growth factor (bFGF) was a stimulator for osteogenic differentiation of mesenchymal stem cells (MSC), and PPARγ was a key regulator in MSC osteogenic differentiation. However, whether bFGF and PPARγ could play synergetic roles within a 3D matrix to promote MSC osteogenic differentiation was unknown. In the study, bFGF and PPARγ targeting siRNAs were incorporated into collagen hydrogels for MSC cultivation. Their optimal concentrations in collagen hydrogels were determined. The capacity of bFGF/siRNA-carrying hydrogels in supporting osteogenic differentiation of MSCs was systematically evaluated with multimodality of methods, including flow cytometry, quantitative real-time PCR, Western Blotting, as well as ALP activity and calcium content determination. We demonstrated in 3D collagen hydrogel that both bFGF and siRNA molecules were efficiently retained, strengthening their effects on the incorporated MSCs. Osteogenic analysis demonstrated that the in-situ forming hydrogels carrying bFGF and siRNAs potently promoted osteogenic differentiation of incorporated MSCs, significantly superior to pure collagen and bFGF-carrying collagen. Thus, collagen hydrogels functionalized with bFGF and PPARγ targeting siRNAs may be promising in bone tissue engineering.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3