circRNA THBS1 silencing inhibits the malignant biological behavior of cervical cancer cells via the regulation of miR-543/HMGB2 axis

Author:

Tian Rui1,Li Huixin1,Ren Songjie1,Li Shukui2,Fang Run3,Liu Yang4

Affiliation:

1. Gynecology Department, Shanghai Mengchao Cancer Hospital , Shanghai 201800 , China

2. Urinary Surgery, Renhe Hospital, Baoshan District , Shanghai 200431 , China

3. Urinary Surgery, Shanghai Mengchao Cancer Hospital , Shanghai 201800 , China

4. Gynaecology and Obstetrics, Lin’an District First People’s Hospital , 548 Yijin Street, Lin’an District , Hangzhou 311300 , China

Abstract

Abstract Circular RNA (circRNA) THBS1 has been shown to exist as an oncogene in non-small-cell lung cancer, but its role in cervical cancer is still unclear. Our experiment aimed to uncover the functions and specific mechanism of circRNA THBS1 in cervical cancer cells. Levels of circRNA THBS1 and miR-543 in cervical cancer tissues and cell lines were assessed by RT-qPCR. starBase and dual luciferase reporter gene assay were applied for investigating the correlation between miR-543 and circRNA THBS1/HMGB2. Cell proliferation and apoptosis were evaluated by MTT and flow cytometry, respectively. Furthermore, the levels of HMGB2, E-cadherin, and N-cadherin in HeLa cells were determined by RT-qPCR and western blot analysis. Our data revealed that circRNA THBS1 was significantly upregulated and miR-543 was low expressed in cervical cancer tissues and cell lines. circRNA THBS1 interacted with miR-543 and negatively regulated miR-543 expression in HeLa cells. Silencing of circRNA THBS1 remarkably suppressed HeLa cells’ viability, accelerated cells’ apoptosis, and inhibited the EMT of HeLa cells, while these changes were reversed by miR-543 inhibitor. Moreover, miR-543 affected HeLa cells by targeting HMGB2. In conclusion, circRNA THBS1 silencing inhibited the malignant biological behaviors of cervical cancer cells via the regulation of miR-543/HMGB2 axis.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3