Nucleophosmin 1 associating with engulfment and cell motility protein 1 regulates hepatocellular carcinoma cell chemotaxis and metastasis

Author:

Yang Gangqi1234,Li Hongyan2,Dong Zheng4,Deng Kai5,Lu Yinying143

Affiliation:

1. Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University , Guiyang , Guizhou 550001 , China

2. General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases , Beijing 100053 , China

3. Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University , Shenzhen , Guangdong 518055 , China

4. Comprehensive Liver Cancer Center, 5th Medical Center of the PLA General Hospital , Beijing 100039 , China

5. The First Affiliated Hospital of Chongqing Medical College , Chongqing 400016 , China

Abstract

Abstract The chemokine, C-X-C motif chemokine ligand 12 (CXCL12) and its G-protein-coupled receptor (GPCR) and C-X-C chemokine receptor type 4 (CXCR4), are closely associated with promoting hepatocellular carcinoma (HCC) chemotaxis and metastasis. The binding of CXCL12 and CXCR4 depends on the heterotrimeric Gi proteins to regulate actin polymerisation and mobility in HCC. Although the role of GPCR/Gi signalling in carcinogenesis migration has been intensively studied, the detailed mechanism remains largely unknown. In this study, a small interfering RNA technique was used to knock down the Nucleophosmin 1 (NPM1) gene expression. Through the chemotaxis and invasion assays, wound healing, proliferation, filamentous-actin, immunofluorescence, immunohistochemical assays, and co-immunoprecipitation assays, we investigated the specific biological role and underlying mechanisms of the NPM1 in HCC. Additionally, dimethyl fumarate (DMF), a fumaric acid ester, was used to inhibit the HCC cell chemokines and metastasis by regulating ELMO1 and NPM1. Therefore, this study reported that NPM1 gene expression was upregulated in the HCC tissues and cell lines. The NPM1 knockdown significantly inhibited the proliferation, migration, and chemotaxis of the HepG2 cells in vitro. Further mechanistic studies suggested that the NPM1 interacts with ELMO1 and the CXCL12/CXCR4 pathway activates NPM1-dependent regulation of the ELMO1 localisation. Furthermore, the DMF significantly inhibited tumour metastasis induced by the NPM1/ELMO1 signalling pathway, as observed in in vitro cell functional experiments. These data suggested that as a potentially novel therapeutic approach, the simultaneous targeting of NPM1 and ELMO1 could effectively be used to treat HCC.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3