Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae

Author:

Li Yanping12,Kumar Suresh3ORCID,Zhang Lihu1,Wu Hongjie4,Wu Hongyan1

Affiliation:

1. Pharmacy Department, Jiangsu Vocational College of Medicine , 224005 Yancheng , Jiangsu Province , China

2. Post Graduate Centre, Management and Science University, University Drive , Off Persiaran Olahraga, Section 13, 40100 , Selangor , Malaysia

3. Department of Diagnostic and Allied Health Science, Faculty of Health and Life Sciences, Management and Science University , Shah Alam , Malaysia

4. School of Electronic and Information Engineering, Suzhou University of Science and Technology , Suzhou , China

Abstract

Abstract Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen that can cause a range of infections in hospitalized patients. With the growing use of antibiotics, MDR K. pneumoniae is more prevalent, posing additional difficulties and obstacles in clinical therapy. To provide a valuable reference to deeply understand K. pneumoniae, and also to provide the theoretical basis for clinical prevention of such bacteria infections, the antibiotic resistance and mechanism of K. pneumoniae are discussed in this article. We conducted a literature review on antibiotic resistance of K. pneumoniae. We ran a thorough literature search of PubMed, Web of Science, and Scopus, among other databases. We also thoroughly searched the literature listed in the papers. We searched all antibiotic resistance mechanisms and genes of seven important antibiotics used to treat K. pneumoniae infections. Antibiotics such as β-lactams, aminoglycosides, and quinolones are used in the treatment of K. pneumoniae infection. With both chromosomal and plasmid-encoded ARGs, this pathogen has diverse resistance genes. Carbapenem resistance genes, enlarged-spectrum β-lactamase genes, and AmpC genes are the most often β-lactamase resistance genes. K. pneumoniae is a major contributor to antibiotic resistance worldwide. Understanding K. pneumoniae antibiotic resistance mechanisms and molecular characteristics will be important for the design of targeted prevention and novel control strategies against this pathogen.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3