Analysis of somatic mutations and key driving factors of cervical cancer progression

Author:

Niyazi Mayinuer1,Han Lili1,Husaiyin Sulaiya1,Aishanjiang Ayimila1,Guo Min1,Muhaimati Gulibanu1,Rozi Hankez1,Sun Haiyan1,Lu Jing1,Ma Chunhua1,Rouzi Nuermangul1,Liu Xiaowan1,Zhu Kaichun2

Affiliation:

1. Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region , Urumqi 830001 , China

2. Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region , No. 91, Tianchi Road, Tianshan District , Urumqi 830001 , China

Abstract

Abstract We investigated the somatic mutations and key driving factors of cervical cancer by whole exome sequencing . We found 22,183 somatic single nucleotide variations (SNVs) in 52 paired samples. Somatic SNVs in cervical cancer were significantly higher than those in high-grade intraepithelial lesion and low-grade squamous intraepithelial lesion groups (P < 0.05). C → T/G accounted for 44.12% of base substitution. Copy number variation (false discovery rate < 0.05) was found in 57 chromosome regions. The three regions with significant differences between cervical cancer and non-cervical cancer groups were 1q21.1, 3q26.33, and 13q33.1, covering genes related to tumor proliferation, differentiation, and apoptosis. The frequency of human papillomavirus (HPV) insertion/integration and the number of “tCw” mutations in the cervical cancer group were significantly higher than those in the non-cervical cancer group (P < 0.05). The total number of mutations was positively correlated with the number of “tCw” mutations (R 2 = 0.7967). HPV insertion/integration (OR = 2.302, CI = 1.523–3.589, P = 0.0005), APOBEC enrichment (OR = 17.875, CI = 2.117–150.937, P = 0.001), and HLA-B*39 in HLA-I (OR = 6.435, CI = 0.823–48.919, P = 0.0042) were risk factors for cervical cancer, while HLA-DQB1*05 in HLA-II was a protective factor (OR = 0.426, CI = 0.197–0.910, P = 0.032). Conclusively, HPV insertion/integration, APOBEC mutagenesis, and HLA polymorphisms are high-risk factors for cervical cancer and may be causes of genome instability and somatic mutations. This study provides experimental data for revealing the molecular mechanism of cervical cancer.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Reference44 articles.

1. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85. 10.3322/caac.21565.

2. Arbyn M, Weiderpass E, Bruni L, de Sanjose S, Saraiya M, Ferlay J, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8(2):e191–203. 10.1016/S2214-109X(19)30482-6.

3. Bruni L, Albero G, Serrano B, Mena M, Gomez D, Munoz J, et al. Human Papillomavirus and Related Diseases in Mali. Lyon, France: ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre); 2019.

4. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. 10.1038/nature12477.

5. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47–54. 10.1038/nature17676.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3