Predicting the replication fidelity of injection molded solid polymer microneedles

Author:

Evens Tim1,Castagne Sylvie2,Seveno David3,Van Bael Albert13

Affiliation:

1. Department of Materials Engineering Diepenbeek Campus , KU Leuven , Wetenschapspark 27, 3590 Diepenbeek , Belgium

2. Department of Mechanical Engineering and Flanders Make@KU Leuven-MaPS , KU Leuven , Celestijnenlaan 300, 3001 Leuven , Belgium

3. Department of Materials Engineering , KU Leuven , Kasteelpark Arenberg 44, 3001 Leuven , Belgium

Abstract

Abstract Microneedles are sharp microscopic features, which can be used for drug or vaccine delivery in a minimally invasive way. Recently, we developed a method to produce polymer microneedles using laser ablated molds in an injection molding process. At this moment, extensive injection molding experiments are needed to investigate the replication fidelity. Accurate predictions of the injection molding process would eliminate these costly and time expensive experiments. In this study, we evaluated the replication fidelity of solid polymer microneedles using numerical simulations and compared the results to injection molding experiments. This study was performed for different sizes of microneedles, different thermoplastics (polypropylene and polycarbonate) and different mold materials (tool steel, copper alloy and aluminium alloy). Moreover, different processing conditions and different locations of the microneedles on the macroscopic part were considered. A good correlation with experimental findings was achieved by optimizing the heat transfer coefficient between the polymer and the mold, while using a multiscale mesh with a sufficient number of mesh elements. Optimal heat transfer coefficients between 10,000 and 55,000 W/m2 K were found for the different combinations of polymer and mold materials, which resulted in an accuracy of the simulated microneedle replication fidelity between 94.5 and 97.0%.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3