Energy levels and transition probabilities of N+, F3+, and Ne4+ ions

Author:

Sun Yan1,Hu Feng1,Li WenYi1,Liu DongDong1,Mei MaoFei1,Gou BingCong2

Affiliation:

1. School of Physics and New energy , Xuzhou Institute of Technology , Xuzhou 221018, China

2. School of Physics , Beijing Institute of Technology , Beijing 100081, China

Abstract

Abstract Term energies, oscillator strengths, transition probabilities, and transition wavelengths among the low-lying states of (1s2)2s22p2, 2s22p3p, 2s2p3, 2s22p3s, and 2s22p3d 1,3,5 L L = S, P, D, F in N+, F3+, and Ne4+ ions were calculated by using the multiconfiguration Rayleigh-Ritz variation method and restricted variation method. The transition oscillator strengths and transition probabilities for the electric dipole transitions are both given in length and velocity gauges. Deviations between these two gauge values are discussed. The calculated atomic parameters are in good agreement with the observed experimental results and other theoretical data. Furthermore, the uncertainty of each electric dipole transition is estimated. Several uncertainties of transition parameters are improved when comparing with values from national institute of standards and technology NIST database. Atomic parameters presented in this paper should be useful for identifying the levels as well as for precise spectral modeling in astrophysical and laboratory plasmas in the future work.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project of Jiangsu Province

QinLan project of Jiangsu Province of China

the State Key Laboratory Open Fund of Millimeter Waves of Southeast University

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3