Machine learning studies for the effects of probes and cavity on quantum synchronization

Author:

Meng Qing-Yu1,Hu Yong1,Yang Qing1,Zhu Qin-Sheng1,Li Xiao-Yu2

Affiliation:

1. School of Physics, University of Electronic Science and Technology of China , Chengdu , 610054 , China

2. School of Information and Software Engineering, University of Electronic Science and Technology of China , Chengdu , 610054 , China

Abstract

Abstract As an important technology of the quantum detection, the quantum synchronization detection is always used in the detection or measurement of some quantum systems. A probing model is established to describe the probing of a qubit system in the cavity field and to reveal the effect of the environment (cavity) on the quantum synchronization occurrence, as well as the interactions among environment, a qubit system, and probing equipment. By adjusting the frequency of the probe, the in-phase, anti-phase, and out-of-phase synchronization can be achieved. Simultaneously, the effect of γ 3 ${\gamma }_{3}$ which describes the interaction strength between the probe and environments for quantum synchronization is discussed under different Ohmic dissipation index s . Finally, the machine learning method is applied to present an optimization for classification and regression of synchronization transition dependent on s and γ 3 ${\gamma }_{3}$ .

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3