Cosmology of Tsallis holographic scalar field models in Chern–Simons modified gravity and optimization of model parameters through χ 2 minimization

Author:

Chakraborty Gargee1,Chattopadhyay Surajit1ORCID

Affiliation:

1. Department of Mathematics , Amity University Kolkata , Kolkata , India

Abstract

Abstract The present study reports reconstruction schemes for tachyon, k-essence and dilaton scalar field model of Dark Energy (DE) through Tsallis holographic dark fluid under the framework of Chern–Simons modified gravity. Reproducing the conservation equation for a coupled model with interaction term Q = 3 H b 2 ρ m $Q=3H{b}^{2}{\rho }_{m}$ we have reconstructed the different scalar fields and the corresponding potentials. In the case of tachyon, ΛCDM fixed point is attained under this cosmological settings. Considering k-essence in this interacting situation, we have derived some constraints on the interaction term as well as Tsallis holographic dark energy parameter. Reconstructing dilaton scalar field, we have studied the behavior of scalar field and potential. In all those cases, the reconstructed Equation of State (EoS) parameters have been plotted and when computed for current universe z = 0 are found to be consistent with various observational data including Planck + WP + BAO. The only exception is a particular case of reconstructed k-essence model where phantom behavior is apparent, but its numerical value is deviated from the bounce set by the observations. Expressions for different constraints have been obtained and evolutionary behavior of reconstructed scalar fields and potentials for the various cases have been pictorially presented. Finally, we have developed a functional relationship between Hubble parameter and redshift and optimized the parameter values through χ 2 minimization using the observed Hubble parameter values from Hai Yu et al. 2018 ApJ 856 3.

Funder

Council of Scientific and Industrial Research

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3