Blast waves propagation in magnetogasdynamics: power series method

Author:

Devi Munesh1,Arora Rajan1,Singh Deepika1

Affiliation:

1. Department of Applied Science and Engineering , Indian Institute of Technology , Roorkee, 247667 , India

Abstract

Abstract Blast waves are produced when there is a sudden deposition of a substantial amount of energy into a confined region. It is an area of pressure moving supersonically outward from the source of the explosion. Immediately after the blast, the fore-end of the blast wave is headed by the shock waves, propagating in the outward direction. As the considered problem is highly nonlinear, to find out its solution is a tough task. However, few techniques are available in literature that may give us an approximate analytic solution. Here, the blast wave problem in magnetogasdynamics involving cylindrical shock waves of moderate strength is considered, and approximate analytic solutions with the help of the power series method (or Sakurai’s approach [1]) are found. The magnetic field is supposed to be directed orthogonally to the motion of the gas particles in an ideal medium with infinite electrical conductivity. The density is assumed to be uniform in the undisturbed medium. Using power series method, we obtain approximate analytic solutions in the form of a power series in ( a 0 / U ) 2 ${\left({a}_{0}/U\right)}^{2}$ , where a 0 and U are the velocities of sound in an undisturbed medium and shock front, respectively. We construct solutions for the first-order approximation in closed form. Numerical computations have been performed to determine the flow-field in an ideal magnetogasdynamics. The numerical results obtained in the absence of magnetic field recover the existing results in the literature. Also, these results are found to be in good agreement with those obtained by the Runge–Kutta method of fourth-order. Further, the flow variables are illustrated through figures behind the shock front under the effect of the magnetic field. The interesting fact about the present work is that the solutions to the problem are obtained in the closed form.

Funder

Ministry of Human Resource Development

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3