Finite-Size Scaling of Typicality-Based Estimates

Author:

Schnack Jürgen1ORCID,Richter Johannes23,Heitmann Tjark4ORCID,Richter Jonas4ORCID,Steinigeweg Robin4ORCID

Affiliation:

1. Fakultät für Physik, Universität Bielefeld , Postfach 100131, D-33501 Bielefeld , Germany

2. Institut für Physik, Universität Magdeburg , P.O. Box 4120 , D-39016 Magdeburg , Germany

3. Max-Planck-Institut für Physik Komplexer Systeme , Nöthnitzer Straße 38 , 01187 Dresden , Germany

4. Fachbereich Physik, Universität Osnabrück , Barbarastr. 7 , D-49076 Osnabrück , Germany

Abstract

Abstract According to the concept of typicality, an ensemble average can be accurately approximated by an expectation value with respect to a single pure state drawn at random from a high-dimensional Hilbert space. This random-vector approximation, or trace estimator, provides a powerful approach to, e.g. thermodynamic quantities for systems with large Hilbert-space sizes, which usually cannot be treated exactly, analytically or numerically. Here, we discuss the finite-size scaling of the accuracy of such trace estimators from two perspectives. First, we study the full probability distribution of random-vector expectation values and, second, the full temperature dependence of the standard deviation. With the help of numerical examples, we find pronounced Gaussian probability distributions and the expected decrease of the standard deviation with system size, at least above certain system-specific temperatures. Below and in particular for temperatures smaller than the excitation gap, simple rules are not available.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermodynamics based on neural networks;Physical Review B;2024-04-09

2. A spectrum adaptive kernel polynomial method;The Journal of Chemical Physics;2023-09-15

3. Exact Diagonalization Techniques for Quantum Spin Systems;Challenges and Advances in Computational Chemistry and Physics;2023

4. Entanglement of midspectrum eigenstates of chaotic many-body systems: Reasons for deviation from random ensembles;Physical Review E;2022-01-07

5. Accuracy of the typicality approach using Chebyshev polynomials;Zeitschrift für Naturforschung A;2021-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3