Characterization of Hexokinase and Fructokinase from Suspension-Cultured Catharanthus roseus Cells

Author:

Yamashita Yüko1,Ashihara Hiroshi1

Affiliation:

1. Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo, 112, Japan

Abstract

Abstract Two different hexose-phosphorylating enzymes, hexokinase and fructokinase, were partially purified from suspension-cultured Catharanthus roseus cells. One of the enzymes, hexokinase, catalyzed the phosphorylation of both glucose and fructose. The Km values for glucose and fructose were 0.06 mM and 0.23 mM, respectively. The Vmax of the enzyme with fructose was approximately three times higher than with glucose. This enzyme was specific in its requirement for ATP and its Km value for ATP was 52 μM. The optimum pH was 8.0 and Mg2+ or Mn2+ was required for the activity. The activity was inhibited by considerably higher concentrations of ADP (i.e., 4 mM ADP was required for 50% inhibition). The second enzyme, fructokinase, was specific for fructose, and no activity was detected with glucose as substrate. This enzyme used UTP or CTP as phosphate donor. The Km values of this enzyme for fructose and UTP were 0.13 mM and 0.15 mM, respectively. The pH optimum was 7.2, and Mg2+ or Mn2+ was required for the activity. These divalent cations could be partially replaced by Ca2+. The activity was inhibited noncompetitively by ADP and AMP. 90% inhibition of the activity by 0.5 mM ADP was observed in the presence of 2 mM UTP and 5 mM MgCl2. Fructose-2,6-bisphosphate, glucose-1,6-bisphosphate, glucose-6-phosphate, and fructose-6-phosphate had little or no effect on the activity of both the hexokinase and the fructokinase. Based on these results, a discussion is presented of the role of hexokinase and fructokinase and their involvement in the regulation of the metabolism of sugars in Catharanthus cells.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3