Affiliation:
1. IST Austria (Institute of Science and Technology Austria) , Klosterneuburg , Austria
Abstract
Abstract
The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.
Subject
Applied Mathematics,Computational Mathematics,Mathematical Physics,Molecular Biology,Biophysics
Reference14 articles.
1. [1] A. V. Akopyan and H. Edelsbrunner, The Weighted Mean Curvature Derivative of a Space-Filling Diagram, Computational and Mathematical Biophysics, 8(1):51–67, 2020.
2. [2] U. Bauer and H. Edelsbrunner. The Morse theory of Cech and Delaunay complexes. Trans. Amer. Math. Soc. 369 (2017), 3741–3762.
3. [3] P.O. Bonnet. Mémoire sur la théorie générale des surfaces. J. de l’École Polytechnique 32 (1848), 1–46.
4. [4] R. Bryant, H. Edelsbrunner, P. Koehl and M. Levitt. The area derivative of a space-filling diagram. Discrete Comput. Geom. 32 (2004), 293–308.
5. [5] W. Chauvenet. Treatise on Plane and Spherical Trigonometry. Ninth edition, Lippincott Company, Philadelphia, Pennsylvania, 1887.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献