Computational methods for NMR and MS for structure elucidation III: More advanced approaches

Author:

Bitchagno Gabin T. M.,Fobofou Tanemossu Serge Alain

Abstract

Abstract The structural assignment of natural products, even with the very sophisticated one-dimensional and two-dimensional (1D and 2D) spectroscopic methods available today, is still a tedious and time-consuming task. Mass spectrometry (MS) is generally used for molecular mass determination, molecular formula generation and MS/MSn fragmentation patterns of molecules. In the meantime, nuclear magnetic resonance (NMR) spectroscopy provides spectra (e. g. 1 H, 13C and correlation spectra) whose interpretation allows the structure determination of known or unknown compounds. With the advance of high throughput studies, like metabolomics, the fast and automated identification or annotation of natural products became highly demanded. Some growing tools to meet this demand apply computational methods for structure elucidation. These methods act on characteristic parameters in the structural determination of small molecules. We have numbered and herein present existing and reputed computational methods for peak picking analysis, resonance assignment, nuclear Overhauser effect (NOE) assignment, combinatorial fragmentation and structure calculation and prediction. Fully automated programs in structure determination are also mentioned, together with their integrated algorithms used to elucidate the structure of a metabolite. The use of these automated tools has helped to significantly reduce errors introduced by manual processing and, hence, accelerated the structure identification or annotation of compounds.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Reference98 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3