Constrained BV functions on covering spaces for minimal networks and Plateau’s type problems

Author:

Amato Stefano1,Bellettini Giovanni2,Paolini Maurizio3

Affiliation:

1. 1S.I.S.S.A., via Bonomea 265, 34136, Trieste, Italy

2. 2Dipartimento di Matematica, Università di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italy; and INFN Laboratori Nazionali di Frascati (LNF), via E. Fermi 40, Frascati 00044 Roma, Italy

3. 3Dipartimento di Matematica, Università Cattolica “Sacro Cuore”, via Trieste 17, 25121 Brescia, Italy

Abstract

AbstractWe link covering spaces with the theory of functions of bounded variation, in order to study minimal networks in the plane and Plateau’s problem without fixing a priori the topology of solutions. We solve the minimization problem in the class of (possibly vector-valued) $\mathrm{BV}$ functions defined on a covering space of the complement of an ${(n-2)}$-dimensional compact embedded Lipschitz manifold S without boundary. This approach has several similarities with Brakke’s “soap films” covering construction. The main novelty of our method stands in the presence of a suitable constraint on the fibers, which couples together the covering sheets. In the case of networks, the constraint is defined using a suitable subset of transpositions of m elements, m being the number of points of S. The model avoids all issues concerning the presence of the boundary S, which is automatically attained. The constraint is lifted in a natural way to Sobolev spaces, allowing also an approach based on Γ-convergence.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference50 articles.

1. Minimal interface criterion for phase transitions in mixtures of Cahn–Hilliard fluids;Ann. Inst. H. Poincaré Anal. Non Linéaire,1990

2. Steiner minimal trees;SIAM J. Appl. Math.,1969

3. Should we solve Plateau’s problem again?;Advances in Analysis: The Legacy of Elias M. Stein,2014

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A convex approach to the Gilbert–Steiner problem;Interfaces and Free Boundaries;2020-07-06

2. Calibrations for minimal networks in a covering space setting;ESAIM: Control, Optimisation and Calculus of Variations;2020

3. On different notions of calibrations for minimal partitions and minimal networks in ℝ2;Advances in Calculus of Variations;2019-04-06

4. Soap films with gravity and almost-minimal surfaces;Discrete & Continuous Dynamical Systems - A;2019

5. Calibrations in families for minimal networks;PAMM;2018-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3