Tagesperiodische antagonistische Schwankungen der Blauviolett- und Gelbrot-Empfindlichkeit als Grundlage der photoperiodischen Diapause-Induktion bei Pieris brassicae

Author:

Bünning Erwin1,Joerrens Gabriele1

Affiliation:

1. Aus dem Botanischen Institut der Universität Tübingen

Abstract

In Pieris brassicae, diapause is inhibited if long-day conditions are imposed during and immediately after the third molting. The critical daylength is approximately 14 hours. Under short-day conditions with a main light period of 6 or 12 hours’ duration, supplementary light given in the period from 14 to 16 hours after the beginning of the main light period will inhibit diapause. In contrast to this effect of late exposures to light, light given from 1 to 12 hours after the beginning of the main light period promotes diapause. Experiments with extremely long light periods (10—35 hours), but always with a dark period of 10 hours, show that these diurnal fluctuations in quantitative and qualitative responses to light can continue endogenously for several days. Thus, this time-measuring process operates through the mechanism of endogenous diurnal oscillations in just the same way as do photoperiodic reactions in plants. The inhibition of diapause by light in the second half of the diurnal oscillation (under long days or by light interruptions in the dark period) and the promotion by light in the first half (under short days) occur only with light of short wavelengths: ultraviolet, violet, and blue up to about 550 mμ. Yellow and red light act in the opposite fashion, giving diapause inhibition in the first half of the cycle and promotion in the second half. In white light the violet reaction predominates, so that diapause is promoted by short days and inhibited by long days.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3