Lorentz Invariance as a Dynamic Symmetry

Author:

Winterberg F.1

Affiliation:

1. Desert Research Institute, University of Nevada System, Reno, Nevada 89506

Abstract

If all the forces of nature can be reduced to those which follow from a linear combination of a scalar and vector potential, as in electrodynamics, Lorentz invariance can be derived as a dynamic symmetry. All that has to be done is to assume that there is an all pervading substratum or ether, transmitting those forces through space, and that all physical bodies actually observed are held together by those forces. Under this assumption bodies in absolute motion through the substratum suffer a true contraction equal to the Lorentz contraction, and as a result of this contraction clocks in absolute motion go slower by the same amount. The velocity of light appears then to be equal in all inertial reference systems, if Einstein’s clock synchronization convention by reflected light signals is used and which presupposes this result. The Lorentz contraction and time dilation measured on an object at rest relative to an observer who gained a velocity by an accelerated motion is there explained as an illusion caused by a true Lorentz contraction and time dilation of the observer. Both the special relativistic kinematic interpretation and this alternative dynamic interpretation give identical results only in the adiabatic limit where the accelerations are small, because if the Lorentz contraction is a real physical effect, it must take a finite time. However, to break the peculiar interaction symmetry with the ether, and which in the dynamic interpretation is the cause for the Lorentz invariance, the accelerated motions must involve rotation. Only then can non-adiabatic relativity-violating effects be observed and which would establish a preferred reference system at rest with the ether. Under most circumstances relativity-violating effects resulting from such a dynamic interpretation of special relativity would be very small and difficult to observe, a likely reason why they have evaded their detection in the past. For the rotating earth a residual sideral tide has been observed with a superconducting gravimeter, and which could be explained by an “ether wind” of about 300 km /sec at rest with the cosmic microwave background radiation. However, because of the observational uncertainties in measuring the terrestrial tides no definite conclusion can be drawn. A number of new experiments are therefore needed to decide the question regarding a possible weak violation of special relativity.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Winterberg’s Conjectured Breaking of the Superluminal Quantum Correlations over Large Distances;International Journal of Theoretical Physics;2007-09-21

2. The Dual de Broglie Wave;Advances in Imaging and Electron Physics;1997

3. Extended wave-particle description of longitudinal photons;Journal of Physics A: Mathematical and General;1991-11-07

4. Unitary Information Ether and its Possible Applications;Annalen der Physik;1991

5. Is a massive particle a compound bradyon-pseudotachyon system?;Physics Letters A;1988-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3