Bifurcation and Stability Analysis of a One-Dimensional Diffusion-Autocatalytic Reaction System

Author:

De Dier B.1,Walraven F.1,Janssen R.1,Van Rompay P.1,Hlavacek V.2

Affiliation:

1. Dept, of Chemical Engineering, Katholieke Universiteit Leuven, Belgium , De Croylaan 2, B-3030 Leuven

2. Department of Chemical Engineering, S.U.N.Y . at Buffalo. Clifford C. Furnas Hall, Am herst 14260, New York USA.

Abstract

Results of a numerical analysis of a set of one-dimensional reaction -diffusion equations are presented. The basis of these equations is a model scheme of chemical reactions, involving auto-and cross-catalytic steps (“Brusselator”). The steady state problem is solved numerically, fully exploiting the properties of recently developed continuation codes. Bifurcation diagrams are constructed for zero flux boundary conditions. For a relatively large diffusivity of initial species the Brusselator displays a huge number of dissipative steady state structures. At low system lengths a mechanism of perturbed bifurcation may be percieved. Bifurcations coincide with turning points of asymmetric solution branches. Completely isolated solutions prove to exist as well. For the problem without limited diffusion of the initial species, a careful bifurcation analysis show s the existence of a number of higher order bifurcations. At some of these points asymmetric profiles emanate from other asymmetric structures. Bifurcation points and limit points do not necessarily coincide. Stability analysis shows that relatively few steady states are stable. Especially symmetric solutions are found to be stable.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bi-periodicity in an isothermal autocatalytic reaction-diffusion system;Continuation Techniques and Bifurcation Problems;1990

2. Understanding Steady-State Bifurcation Diagrams for a Model Reaction-Diffusion System;Continuation and Bifurcations: Numerical Techniques and Applications;1990

3. Numerical Determination of an Emanating Branch of Hopf Bifurcation Points in a Two-Parameter Problem;SIAM Journal on Scientific and Statistical Computing;1989-07

4. Bi-periodicity in an isothermal autocatalytic reaction-diffusion system;Journal of Computational and Applied Mathematics;1989-06

5. Bi-periodic behaviour in the diffusive autocatalator;Physics Letters A;1988-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3