The Performance of Fixed-Horizon, Look-Ahead Procedures Compared to Backward Induction in Bayesian Adaptive-Randomization Decision-Theoretic Clinical Trial Design

Author:

Lipsky Ari M.1234,Lewis Roger J.254

Affiliation:

1. Gertner Institute for Epidemiology and Health Policy Research , Biostatistics Unit , Tel Hashomer , Israel

2. Department of Emergency Medicine , Los Angeles County Harbor-UCLA Medical Center , Torrance, California , USA

3. Department of Emergency Medicine , Rambam Health Care Campus , Haifa , Israel

4. Los Angeles Biomedical Research Institute , Torrance , CA, USA

5. Department of Medicine , University of California Los Angeles David Geffen School of Medicine , Los Angeles, CA , USA

Abstract

Abstract Designing optimal, Bayesian decision-theoretic trials has traditionally required the use of computationally-intensive backward induction. While methods for addressing this barrier have been put forward, few are both computationally tractable and non-myopic, with applications of the Gittins index being one notable example. Here we explore the look-ahead approach with adaptive-randomization, with designs ranging from the fully myopic to the fully informed. We compare the operating characteristics of the look-ahead designed trials, in which decision rules are based on a fixed number of future blocks, with those of trials designed using traditional backward induction. The less-myopic designs performed well. As the designs become more myopic or the trials longer, there were disparities in regions of the decision space that are transition zones between continuation and stopping decisions. The more myopic trials generally suffered from early stopping as compared to the less myopic and backward induction trials. Myopic trials with adaptive randomization also saw as many as 28 % of their continuation decisions change to a different randomization ratio as compared to the backward induction designs. Finally, early stages of myopic-designed trials may have disproportionate effect on trial characteristics.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3