1. Benediktsson, J.A., J. Chanussot, and M. Fauvel (2007), Multiple classifier systems in remote sensing: from basics to recent developments. In: M. Haindl, J. Kittler, and F. Roli (eds.), Multiple Classifier Systems, Lecture Notes in Computer Science, Vol. 4472, Springer, Berlin Heidelberg, 501-512, DOI: 10.1007/978-3-540-72523-7_50.
2. Briem, G.J., J.A. Benediktsson, and J.R. Sveinsson (2002), Multiple classifiers applied to multisource remote sensing data, IEEE Trans. Geosci. Remote Sens. 40, 10, 2291–2299, DOI: 10.1109/TGRS.2002.802476.
3. Brito, P.L., and J.A. Quintanilha (2012), A literature review, 2001–2008, of classification methods and inner urban characteristics identified in multispectral remote sensing images. In: Proc. 4th GEOBIA, 7–9 May 2012, Rio de Janeiro, Brazil, 586–591.
4. Cerquides, J., M. López-Sánchez, S. Ontañaón, E. Puertas, A. Puig, O. Pujol, and D. Tost (2006), Classification algorithms for biomedical volume datasets. In: R. Marin, E. Onaindia, A. Bugarin, and J. Santos (eds.), Current Topics in Artificial Intelligence, Springer, Berlin Heidelberg, ###143–152, DOI: 10.1007/11881216_16.
5. Chan, J.C.W., and D. Paelinckx (2008), Evaluation of Random Forest and AdaBoost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery, Remote Sens. Environ. 112, 6, 2999–3011, DOI: 10.1016/j.rse.2008.02.011.