γ-Brass type structures with I- and P-cell in the ternary Cu–Zn–In system

Author:

Misra Samiran1ORCID,Giri Souvik1ORCID,Jana Partha P.1ORCID

Affiliation:

1. Department of Chemistry , IIT Kharagpur , Kharagpur 721302, India

Abstract

Abstract γ-Brass type phases in Cu–Zn–In ternary system were synthesized from the highly pure elements by conventional solid-state synthesis and characterized by X-ray diffraction and EDX analysis. Diffraction analysis confirmed the existence of cubic γ-brass type phases with I- and P-cell having a significant homogeneity range in the ternary Cu–Zn–In system. The phase homogeneity is connected with structural disorder based on mixed site occupancies. Site specific In substitution was observed during single-crystal structure analysis. The γ-brass structures with body-centered cubic lattice (I 4 $‾{4}$ 3m) are viewed as 26-atom γ-clusters. Like Cu5Zn8, the inner tetrahedron (IT), outer tetrahedron (OT) and octahedron (OH) sites in the 26-atom clusters of γ-brass structures with I-cell are occupied by Zn, Cu, Cu, respectively. Indium substitution is restricted to the cuboctahedral (CO) site and the CO site is assumed to be mixed with In, Cu and Zn throughout the homogeneity range. The structures of cubic γ-brass type (P 4 $‾{4}$ 3m) phases with P-cell are built up with two independent 26‐atom γ‐clusters and centered at the special positions A (0, 0, 0) and B (½, ½, ½) of the unit cell. According to the single‐crystal X‐ray analyses, In substitutions are largely restricted to the cuboctahedral sited B clusters. In the cubic γ-phases with P-cell, site occupancy pattern of cluster positioned at A is similar to the γ-cluster in Cu5Zn8, whereas cluster B bears a close resemblance to Cu-poor γ-cluster (Cu14In12) of Cu9In4 (P 4 $‾{4}$ 3m). The vec values for cubic γ-brass type phases in the Cu–Zn–In ternary system ranges between 1.57 and 1.64.

Funder

Science and Engineering Research Board

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3