Multinuclear solid state NMR spectroscopy of ternary rare-earth silicides RET
2Si2 and germanides LaT
2Ge2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au)
Author:
Benndorf Christopher1, Eckert Hellmut23, Pöttgen Rainer4
Affiliation:
1. Institut für Anorganische Chemie und Kristallographie , Universität Leipzig , Johannisallee 29, 04103 Leipzig , Germany 2. Institut für Physikalische Chemie , Universität Münster , Corrensstraße 28-30, 48149 Münster , Germany 3. Institute of Physics in São Carlos , University of São Paulo , São Carlos , SP 13560-590 , Brazil 4. Institut für Anorganische und Analytische Chemie , Universität Münster , Corrensstrasse 30, 48149 Münster , Germany
Abstract
Abstract
A series of ternary rare earth – transition metal – tetrelides RET
2
Tt
2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au; Tt = Si, Ge) was synthesized by arc melting of the elements and subsequent annealing. The samples were characterized by powder X-ray diffraction and in addition, the structures of REOs2Si2 (RE = Y, La, Lu), LaAu2Si2, LaAg2Ge2 and LaAu2Ge2 were refined from single crystal X-ray diffractometer data. The tetrelides crystallize with the ThCr2Si2 type (I4/mmm) except the platinum compounds which adopt the klassengleiche superstructure of the CaBe2Ge2 type (P4/nmm). The transition metal atoms have tetrahedral tetrel coordination and the tetrahedra condense to layers via common edges. The stacking of these layers leads to Tt−Tt bonds in the ThCr2Si2 type phases and heteroatomic T−Tt bonds in the CaBe2Ge2 type phases. The rare earth atoms fill larger cages within these three-dimensional networks (coordination number 16 with RE@T
8
Tt
8) with site symmetries 4/mmm (ThCr2Si2 type) and 4mm (CaBe2Ge2 type). Systematic multinuclear solid state NMR spectroscopic investigations allowed observing the effect of the involved rare-earth metal, transition metal and tetrel group element, respectively. In particular, 29Si isotropic resonance shifts can be predicted from element-specific increments and interatomic Si–Si bonding interactions manifest themselves in axially symmetric magnetic shielding anisotropies.
Publisher
Walter de Gruyter GmbH
Reference36 articles.
1. Andress, K. R.; Alberti, E. Z. Metallkd. 1935, 27, 126–128. 2. Zarechnyuk, O. S.; Krypyakevych, P. I.; Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1965, 9, 706–708. 3. Ban, Z.; Sikirica, M. Acta Crystallogr. 1965, 18, 594–599. https://doi.org/10.1107/s0365110x6500141x. 4. Avilov, A. S.; Imamov, R. M.; Pinsker, Z. G. Sov. Phys. Crystallogr. 1971, 16, 542–544. 5. Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio, USA, 2022.
|
|