On the nature of the phase transitions of aluminosilicate perrhenate sodalite
Author:
Petersen Hilke123ORCID, Robben Lars12ORCID, Gesing Thorsten M.12ORCID
Affiliation:
1. University of Bremen , Institute of Inorganic Chemistry and Crystallography , Leobener Str. 7 , 28359 Bremen , Germany 2. University of Bremen , MAPEX Center for Materials and Processes , Bibliotheksstraße 1 , 28359 Bremen , Germany 3. Max-Planck-Institut für Kohlenforschung , Heterogeneous Catalysis , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
Abstract
Abstract
The temperature-dependent structure-property relationships of the aluminosilicate perrhenate sodalite |Na8(ReO4)2|[AlSiO4]6 (ReO4-SOD) were analysed via powder X-ray diffraction (PXRD), Raman spectroscopy and heat capacity measurements. ReO4-SOD shows two phase transitions in the investigated temperature range (13 K < T < 1480 K). The first one at 218.6(1) K is correlated to the transition of dynamically ordered
P
4
¯
3
n
$P\overline{4}3n$
(> 218.6(1 K) to a statically disordered (<218.6(1) K) SOD template in
P
4
¯
3
n
$P\overline{4}3n$
. The loss of the dynamics of the template anion during cooling causes an increase of disorder, indicated by an unusual intensity decrease of the 011-reflection and an increase of the Re-O2 bond length with decreasing temperature. Additionally, Raman spectroscopy shows a distortion of the ReO4 anion. Upon heating the thermal expansion of the sodalite cage originated in the tilt-mechanism causes the second phase transition at 442(1) K resulting in a symmetry-increase from
P
4
¯
3
n
$P\overline{4}3n$
to
P
m
3
¯
n
$Pm\overline{3}n$
, the structure with the sodalites full framework expansion. Noteworthy is the high decomposition temperature of 1320(10) K.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Walter de Gruyter GmbH
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science
Reference45 articles.
1. Mattigod, S. V., Peter McGrail, B., McCready, D. E., Wang, L., Parker, K. E., Young, J. S. Microporous Mesoporous Mater. 2006, 91, 139–144; https://doi.org/10.1016/j.micromeso.2005.11.025. 2. Dickson, J. O., Harsh, J. B., Flury, M., Lukens, W. W., Pierce, E. M. Environ. Sci. Technol. 2014, 48, 12851–12857; https://doi.org/10.1021/es503156v. 3. Banerjee, D., Elsaidi, S. K., Aguila, B., Li, B., Kim, D., Schweiger, M. J., Kruger, A. A., Doonan, C. J., Ma, S., Thallapally, P. K. Chem. Eur. J. 2016, 22, 17581–17584; https://doi.org/10.1002/chem.201603908. 4. Pierce, E. M., Lilova, K., Missimer, D. M., Lukens, W. W., Wu, L., Fitts, J., Rawn, C., Huq, A., Leonard, D. N., Eskelsen, J. R., Woodfield, B. F., Jantzen, C. M., Navrotsky, A. Environ. Sci. Technol. 2017, 51, 997–1006; https://doi.org/10.1021/acs.est.6b01879. 5. Lukens, W. W., Magnani, N., Tyliszczak, T., Pearce, C.I., Shuh, D. K. Environ. Sci. Technol. 2016, 50, 13160–13168; https://doi.org/10.1021/acs.est.6b04209.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|