Electron microscopy investigations on the mineral lorándite (TlAsS2) from Allchar in Macedonia

Author:

Necke Tobias1,Trapp Maximilian1,Lauterbach Stefan1,Amthauer Georg2,Kleebe Hans-Joachim1

Affiliation:

1. Institute for Applied Geosciences, Technical University of Darmstadt , Schnittspahnstr. 9, 64287 Darmstadt , Germany

2. Department of Chemistry and Physics of Materials , Paris-Lodron University Salzburg , Jakob Haringer Str. 2A, 5020 Salzburg , Austria

Abstract

Abstract In this paper, we report on electron microscopy studies of single crystals of the natural mineral lorándite, TlAsS2. The main focus of this investigation was to address the question as to whether those lorándite crystals are chemically and structurally homogeneous, in order to be utilized as an effective neutrino detector within the lorándite experiment (LOREX) project. Apart from few secondary minerals, being present only at the surface of the lorándite samples, scanning electron microscopy (SEM) indicated homogeneous crystals. Similarly, transmission electron microscopy (TEM) imaging revealed a homogenous and undisturbed crystal structure, with the only exception of local coffee-bean contrasts; however, rarely observed. These specific contrast variations are known to be a typical strain indicator caused by a local deformation of the crystal lattice. Energy-dispersive X-ray spectroscopy (EDS) in conjunction with electron energy-loss spectroscopy (EELS) did not show any significant chemical difference when analysing regions on or off those coffee-bean features, indicating a chemically homogenous mineral. Since the presence of lattice disturbing secondary phase precipitates could be excluded by imaging and complementary chemical analysis, crystal defects such as dislocations and stacking faults or minor fluid inclusions are discussed as the probable origin of this local elastic strain. The experimental results confirm that the studied lorándite single crystals fulfil all structural and chemical requirements to be employed as the natural mineral that allows to determine solar neutrino fluxes. In addition, critical issues regarding the rather challenging sample preparation of lorándite are reported and a quantification of the maximum tolerable electron dose in the TEM is presented, since lorándite was found to be sensitive with respect to electron beam irradiation. Furthermore, the limits of EDS measurements due to peak overlapping are shown and discussed utilizing the case of Pb in lorándite. In this regard, a comparison with the Tl- and Pb-containing natural mineral hutchinsonite, TlPbAs5S9, is also included.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3