Trimorphic TaCrP – A diffraction and 31P solid state NMR spectroscopic study
Author:
Paulsen Christian1, Gerdes Josef Maximilian2, Svitlyk Volodymyr3, Reimann Maximilian Kai1, Rabenbauer Alfred4, Nilges Tom4, Hansen Michael Ryan2, Pöttgen Rainer1
Affiliation:
1. Institut für Anorganische und Analytische Chemie , Universität Münster , Corrensstrasse 30, 48149 Münster , Germany 2. Institut für Physikalische Chemie , Universität Münster , Corrensstrasse 28/30, 48149 Münster , Germany 3. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany; and Rossendorf Beamline (BM20-CRG), European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38043 Grenoble , France 4. Department Chemie , TU München, School of Natural Sciences (NAT) , Lichtenbergstraße 4, 85747 Garching , Germany
Abstract
Abstract
The metal-rich phosphide TaCrP forms from the elements by step-wise solid state reaction in an alumina crucible (maximum annealing temperature 1180 K). TaCrP is trimorphic. The structural data of the hexagonal ZrNiAl high-temperature phase (space group
P
6
‾
2
m
$P\overline{6}2m$
) was deduced from a Rietveld refinement. At room temperature TaCrP crystallizes with the TiNiSi type (Pnma, a = 623.86(5), b = 349.12(3), c = 736.78(6) pm, wR = 0.0419, 401 F
2 values, 20 variables) and shows a Peierls type transition below ca. 280 K to the monoclinic low-temperature modification (P121/c1, a = 630.09(3), b = 740.3(4), c = 928.94(4) pm, β = 132.589(5)°, wR = 0.0580, 1378 F
2 values, 57 variables). The latter phase transition is driven by pairwise Cr–Cr bond formation out of an equidistant chain in o-TaCrP. The phase transition was monitored via different analytical tools: differential scanning calorimetry, powder synchrotron X-ray diffraction, magnetic susceptibility measurements and 31P solid state NMR spectroscopy.
Publisher
Walter de Gruyter GmbH
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science
Reference74 articles.
1. Kuz’ma, Yu., Chykhrij, S. Phosphides. In Handbook on the Physics and Chemistry of Rare Earths; GschneidnerJr.K. A., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 23, 1996; pp. 285–433. Chapter 156. 2. Chykhrij, S. I. Pol. J. Chem. 1999, 73, 1595–1611. 3. Pöttgen, R., Hönle, W., von Schnering, H. G. Phosphides: solid state chemistry. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed. 2nd ed.; Wiley: New York, Vol. VII, 2005; pp. 4255–4308. 4. Al-Ali, L. I., Elmutasim, O., Al Ali, K., Singh, N., Polychronopoulou, K. Nanomaterials 2022, 15, 1435; https://doi.org/10.3390/nano12091435. 5. Lossau, N., Kierspel, H., Langen, J., Schlabitz, W., Wohlleben, D., Mewis, A., Sauer, Ch. Z. Phys. B –Condens. Matter 1989, 74, 227–232; https://doi.org/10.1007/bf01307389.
|
|