Synthesis and structural characterization of orthorhombic Cu3–δ Sb (δ ≈ 0.1) and hexagonal Cu3Sb1–xInx (x ≈ 0.2) phases

Author:

Sinclair Jordan1,Baranets Sviatoslav1ORCID,Bobev Svilen1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry , University of Delaware , Newark , DE 19716 , USA

Abstract

Abstract Cu3Sb is a known copper-rich phase in the Cu–Sb binary phase diagram. It is reported to be dimorphic, with a low-temperature form adopting the orthorhombic Cu3Ti structure type (space group Pmmn, No. 59). The high-temperature form crystallizes in the cubic space group F m 3 m $Fm‾{3}m$ (No. 225), and is isostructural with BiF3. Neither polymorph has been carefully characterized to date, with both structures being assigned to the respective structure type, but never refined. With this study, we provide structural evidence, based on single-crystal and powder X-ray diffraction data that the low-temperature orthorhombic phase exists with a significant amount of defects on one of the Cu-sites. As a result, its composition is not Cu3Sb, but rather Cu3–δ Sb (δ = 0.13(1)). The cubic form could not be accessed as a part of this study, but another Cu-rich phase, Cu3Sb≈0.8In≈0.2, was also identified. It adopts the hexagonal Ni3Sn structure type (space group P63/mmc, No. 194) and represents an In-substituted variant of a hitherto unknown structural modification of Cu3Sb. Whether the latter can exist as a binary phase, or what is the minimum amount of In inclusions needed to stabilize it remains to be determined. Measurements of the thermopower of Cu3–δ Sb (δ = 0.13(1)) were conducted in the range of 300–600 K and demonstrated a maximum value of ca. 50 μV/K at 600 K, indicative of a p-type transport mechanism. Electrical resistivity measurements for the same sample confirmed that it exhibits metallic-like behavior, with a room temperature value of 0.43 mΩ cm. Electronic structure calculations show the absence of a band gap. Thermal analysis was utilized to ascertain the congruent melting of both phases.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3