CalcOPP: a program for the calculation of one-particle potentials (OPPs)
Affiliation:
1. Technische Universität Berlin, Institut für Chemie , Straße des 17. Juni 135, 10623 Berlin , Germany 2. Now: GfBU-Consult Gesellschaft für Umwelt- und Managementberatung , Mahlsdorfer Straße 61b, 15366 Hoppegarten , Germany
Abstract
Abstract
In recent years, one-particle potentials (OPPs) derived from neutron-diffraction data have become a popular means to estimate activation energies of ion migration in solids. Computer programs for their calculation, however, have mostly been private in-house solutions. The software CalcOPP presented herein permits calculating two- or three-dimensional OPPs either from probability density functions put out by the crystallographic suite
Jana2006/
Jana2020 (including error maps) or from scattering-density maps reconstructed using the maximum entropy method (MEM) implementation Dysnomia. The title program is open-source, written in modern free-form Fortran and Python 3, and available free of charge under the permissive MIT License. Executables are published for 64-bit Microsoft Windows and Linux platforms and can be controlled via an intuitive graphical user interface or via command-line interface. Depending on the kind of input, CalcOPP’s output is readily visualized with standard crystallographic software or plotting applications. The release of the program not only makes the rather powerful OPP method more transparent, but it also opens it up to a broader, less programming-oriented public.
Publisher
Walter de Gruyter GmbH
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science
Reference32 articles.
1. Boysen, H. The determination of anharmonic probability densities from static and dynamic disorder by neutron powder diffraction. Z. Kristallogr. 2003, 218, 123–131; https://doi.org/10.1524/zkri.218.2.123.20668. 2. Zucker, U. H., Schulz, H. Statistical approaches for the treatment of anharmonic motion in crystals. II. Anharmonic thermal vibrations and effective atomic potentials in the fast ionic conductor lithium nitride (Li3N). Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1982, 38, 568–576; https://doi.org/10.1107/s0567739482001223. 3. Monchak, M., Hupfer, T., Senyshyn, A., Boysen, H., Chernyshov, D., Hansen, T., Schell, K. G., Bucharsky, E. C., Hoffmann, M. J., Ehrenberg, H. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor. Inorg. Chem. 2016, 55, 2941–2945; https://doi.org/10.1021/acs.inorgchem.5b02821. 4. Weber, D. A., Senyshyn, A., Weldert, K. S., Wenzel, S., Zhang, W., Kaiser, R., Berendts, S., Janek, J., Zeier, W. G. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12. Chem. Mater. 2016, 28, 5905–5915; https://doi.org/10.1021/acs.chemmater.6b02424. 5. Stöffler, H., Zinkevich, T., Yavuz, M., Senyshyn, A., Kulisch, J., Hartmann, P., Adermann, T., Randau, S., Richter, F. H., Janek, J., Indris, S., Ehrenberg, H. Li+-ion dynamics in β-Li3PS4 observed by NMR: local hopping and long-range transport. J. Phys. Chem. C 2018, 122, 15954–15965; https://doi.org/10.1021/acs.jpcc.8b05431.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ‘Young crystallographers’ rejuvenate crystallography in Germany;Acta Crystallographica Section E Crystallographic Communications;2024-02-27
|
|