High-temperature behavior and structural studies on Ca14Al10Zn6O35

Author:

Kahlenberg Volker1,Krüger Hannes1

Affiliation:

1. Institute of Mineralogy and Petrography, University of Innsbruck , Innrain 52, A-6020 Innbruck , Austria

Abstract

Abstract Single-crystals of Ca14Al10Zn6O35 suitable for structural investigations were grown from slow cooling of a melt with the same chemical composition in the range between 1300 and 1000 °C. Diffraction experiments performed at ambient temperature yielded the following crystallographic data: space group F23, a = 14.8468 (6) Å, V = 3272.6 (2) Å3, Z = 4. Structure determination and subsequent least‐squares refinements resulted in a residual of R(|F|) = 1.49% for 753 independent observed reflections and 55 parameters. The chiral structure is based on a tetrahedral framework of corner sharing (Zn,Al)O4-tetrahedra. Zn–Al-distributions among the four crystallographically independent T-sites have been studied. A detailed topological analysis based on natural tiles is presented. Actually, the net can be constructed from a total of four different cages (tiles). The largest cavities (face symbol: [316. 616]) have volumes of about 680 Å3 and host [AlO6][Ca14O36] heteropolyhedral clusters consisting of a central [AlO6] – octahedron surrounded by [CaO6]- and [CaO7]-groups. The calcium cations provide linkage to the tetrahedral framework, in other words, the [AlO6]-unit in the barycenter of the cluster is not directly connected to the framework. Furthermore, thermal expansion has been studied in the interval between 25 and 790 °C using in-situ high‐temperature single‐crystal diffraction. No indications for a structural phase transition were observed. From the evolution of the lattice parameters the thermal expansion tensor has been obtained. The response of the structure to variable temperature has been discussed.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3