Information Dimension and the Probabilistic Structure of Chaos

Author:

Farmer J. Doyne1

Affiliation:

1. Dynamical Systems Collective, Physics Department, UC Santa Cruz, Santa Cruz, California

Abstract

The concepts of entropy and dimension as applied to dynamical systems are reviewed from a physical point of view. The information dimension, which measures the rate at which the information contained in a probability density scales with resolution, fills a logical gap in the classification of attractors in terms of metric entropy, fractal dimension, and topological entropy. Several examples are presented of chaotic attractors that have a self similar, geometrically scaling structure in their probability distribution; for these attractors the information dimension and fractal dimension are different. Just as the metric (Kolmogorov-Sinai) entropy places an upper bound on the information gained in a sequence of measurements, the information dimension can be used to estimate the information obtained in an isolated measurement. The metric entropy can be expressed in terms of the information dimension of a probability distribution constructed from a sequence of measurements. An algorithm is presented that allows the experimental determination of the information dimension and metric entropy.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantifying information extraction using generalized quantum measurements;Physical Review A;2023-09-14

2. Detecting signs of model change with continuous model selection based on descriptive dimensionality;Applied Intelligence;2023-08-24

3. The intrinsic variability of the Indonesian Throughflow;Frontiers in Marine Science;2023-06-29

4. Maximally predictive states: From partial observations to long timescales;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-02-01

5. Continuous Model Selection;Learning with the Minimum Description Length Principle;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3