Multiscale Analysis of Particle Size-dependent Steady Compaction Waves in Granular Energetic Materials

Author:

Zhang Xin-Ming1,Wu Yan-Qing1,Huang Feng-Lei1

Affiliation:

1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, P.R. China

Abstract

Abstract A multiscale model is used to analyze the compaction processes in granular HMX beds composed of different particle sizes (coarse particles, d=40 μm and microfine particles, d=4 μm). The localization strategy of Gonthier is extended to include changes in thermal energy induced by compression. The variation in yield strength caused by solid-liquid phase change is also considered. Analysis of the steady-state wave structure indicates that the compaction behavior of a porous material is dependent on particle size. For solid volume fraction φs < 0.88, the fine particle beds provide greater resistance to compaction than the coarse particle beds, and they propagate compaction waves that travel at faster speeds. When φs > 0.88, the physical state of the compacted bed has become very similar for the two materials. For subsonic compaction waves, the evolution of the grain temperature shows that large particles lead to large hot spots and high temperature and coarse particles are more shock sensitive at low shock pressures. For supersonic compaction waves, compression induced changes in thermal energy play an important role in localization strategy. It increases the localization sphere center radius. The dissipated energy is deposited over a larger localization volume so that the grain temperature near the intergranular contact surface is reduced significantly. The localization center radius further increases because of the decrease in the yield strength caused by solid–liquid phase change. Consequently, the peak grain temperature is reduced further.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3