MHD boundary layer flow and heat transfer characteristics of a nanofluid over a stretching sheet

Author:

Ferdows M.1,Khan Md. Shakhaoath2,Alam Md. Mahmud3,Afify A. A.4

Affiliation:

1. Department of Applied Mathematics , University of Dhaka , Bangladesh

2. Discipline of Chemical Engineering , University of Newcastle , Australia

3. Mathematics Discipline , Khulna University , Bangladesh

4. Department of Mathematics, Deanship of Educational Services , Qassim University , Saudi Arabia

Abstract

Abstract The study of radiative heat transfer in a nanofluid with the influence of magnetic field over a stretching surface is investigated numerically. Physical mechanisms responsible for magnetic parameter, radiation parameter between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model. The parameters for Prandtl number Pr, Eckert number Ec, Lewis number Le, stretching parameter b/a and constant parameter m are examined. The governing partial differential equations were converted into nonlinear ordinary differential equations by using a suitable similarity transformation, which are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six order iteration scheme. The accuracy of the numerical method is tested by performing various comparisons with previously published work and the results are found to be in excellent agreement. Numerical results for velocity, temperature and concentration distributions as well as skin-friction coefficient, Nusselt number and Sherwood number are discussed at the sheet for various values of physical parameters.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference31 articles.

1. [1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, ASME FED, 231/MD- 66 (1995), 99–105.

2. [2] Pooya M. Rad, C. Aghanajafi, The Effect of Thermal Radiation on Nanofluid Cooled Microchannels, J. Fusion Energ., 28 (2009), 91–100.

3. [3] A. A. Afify, M. A. Seddeek, M. A. A. Bbazid, Radiation effects on Falkner-Skan flow of a nanofluid past a wedge in the present of non-uniform heat source/sink, Meccanica, 2011, Submitted.

4. [4] K. Vajravelu, A. Hadjinicolaou, Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream, Int. J. Eng. Sci., 35 (1997), 1237–1244.

5. [5] I. Pop, T. Y. Na, A note on MHD flow over a stretching permeable surface, Mech. Res. Comm., 25 (1998), 263–269.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3