The CCN family acting throughout the body: recent research developments

Author:

Kubota Satoshi1,Takigawa Masaharu1

Affiliation:

1. 1Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, and Okayama University Dental School Advanced Research Center for Oral and Craniofacial Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan

Abstract

AbstractThe animal body is composed of a variety of cells and extracellular matrices that are organized and orchestrated in a harmonized manner to support life. Therefore, the critical importance of a comprehensive understanding of the molecular network surrounding and integrating the cells is now emphasized. The CCN family is a novel group of matricellular proteins that interact with and orchestrate a number of extracellular signaling and matrix molecules to construct and maintain living tissues. This family comprises six distinct members in mammals, which are characterized by a unique and conserved modular structure. These proteins are not targeted to limited and specific receptors to execute specific missions, but manipulate a vast number of biomolecules in the network by serving as a molecular hub at the center. The unified nomenclature, CCN, originates from a simple acronym of the three classical members, which helps us to avoid having any preconception about their pleiotropic and anonymous functional nature. In this review, after a brief summary of the general molecular concepts regarding the CCN family, new aspects of each member uncovered by recent research are introduced, which represent, nevertheless, only the tip of the iceberg of the profound functionality of these molecules.

Publisher

Walter de Gruyter GmbH

Subject

Cellular and Molecular Neuroscience,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference250 articles.

1. master regulator of the genesis of bone and cartilage Signal;Takigawa;Cell,2013

2. WISP expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells;Banerjee;Cancer Res,2008

3. - induced apoptosis enabled by pathways of reactive oxygen species generation and cytochrome release One;Juric,2012

4. NOV functions as a regulator of human hematopoietic stem or progenitor cells;Gupta;Science,2007

5. Gain of oncogenic function of mutants induces invasive phenotypes in human breast cancer cells by silencing WISP;Dhar;Cancer Res,2008

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3