Investigation of copper solubilization and reaction in micronized copper treated wood by electron paramagnetic resonance (EPR) spectroscopy

Author:

Xue Wei,Kennepohl Pierre,Ruddick John N.R.

Abstract

Abstract The purpose of this study was to compare the reaction chemistry of micronized copper and alkaline copper treatments with wood and to determine how fast copper is solubilized during the reaction between the acidic functionality in wood and the basic copper carbonate (CuCO3). Copper species produced in wood by various treatment methods were analyzed by electron paramagnetic resonance (EPR) spectroscopy. The effects of time and solution concentration on the spectral parameters of copper complexes in sawdust treated with copper sulfate solutions were examined, followed by study on the structure and the rate of formation of the copper complexes in sawdust treated with basic CuCO3 suspension. The study further attempted to identify the soluble copper species formed in wood during treatment with micronized copper preservatives. Comparisons were made among the fixed copper complexes in wood treated with micronized copper preservatives, copper sulfate solutions, basic CuCO3 suspensions and alkaline copper solution. The results showed rapid formation of fixed copper complexes in wood treated with aqueous suspensions of basic CuCO3. These complexes can resist leaching, and they have similar stereochemistry to those formed between wood and copper sulfate. This finding supports the premises that soluble copper is generated during the treatment of sawdust with basic CuCO3, and it can bond to wood cell components by migrating into the cell wall in a manner similar to other soluble copper species. Such copper complexes formed are different from those of alkaline copper treated wood, which can be easily distinguished by EPR.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3