Thermal behaviour of Norway spruce and European beech in and between the principal anatomical directions

Author:

Sonderegger Walter,Hering Stefan,Niemz Peter

Abstract

Abstract Thermal conductivity (ThCond), thermal diffusivity and heat capacity of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) have been determined for all principal directions – radial (R), tangential (T) and longitudinal (L) – depending on the moisture content (MC) and ThCond was additionally measured in 15° steps between these directions. The ThCond was determined in a guarded hot plate apparatus. For determining thermal diffusivity and heat capacity, the same apparatus was supplemented with thermocouples and the temperature evolution was evaluated numerically by a partial differential equation. The results show expectedly that ThCond increases with increasing MC, whereby the highest increment was observed in T and the lowest in L direction. ThCond is higher for beech than for spruce in all anatomical directions and the conductivity for both species is more than twice as high in L direction than perpendicular to grain. The highest ThCond is found for beech at a grain angle of approximately 15°. The lowest ThCond shows spruce at an angle of approximately 60° between T and R direction. Thermal diffusivity is similar for both species and decreases with increasing MC. Its differences with regard to the anatomical directions correlate with those of the ThCond values. Heat capacity is lower for beech than for spruce and shows a clear increase with increasing MC.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3