Regulation of glycosylphosphatidylinositol-anchored proteins and GPI-phospholipase D in a c-Myc transgenic mouse model of hepatocellular carcinoma and human HCC

Author:

Ritorto Maria Stella,Rhode Heidrun,Vogel Arndt,Borlak Jürgen

Abstract

Abstract Recent research implicated glycosylphosphatidylinositol-anchored proteins (GPI-AP) and GPI-specific phospholipase D (GPI-PLD) in the pathogenesis of fatty liver disease and hepatocellular carcinoma (HCC). Given that c-Myc is frequently amplified in HCC, we investigated their regulation in a c-Myc transgenic disease model of liver cancer and HCC patient samples. Whole genome scans defined 54 significantly regulated genes coding for GPI-AP of which 29 and 14 were repressed in expression in transgenic tumors and steatotic human hepatocyte cultures, respectively, to influence lipid-mediated signal transduction, extracellular matrix and immunity pathways. Analysis of gene specific promoter revealed >95% to carry c-Myc binding sites thus establishing a link between c-Myc activity and transcriptional response. Alike, serum GPI-PLD activity was increased 4-fold in transgenic mice; however its tissue activity was reduced by 70%. The associated repression of the serine/threonine phosphatase 2A (PP2A), i.e. a key player of c-Myc proteolysis, indicates co-ordinate responses aimed at impairing tissue GPI-PLD anti-proliferative activities. Translational research identified >4-fold increased GPI-PLD serum protein expression though enzyme activities were repressed by 60% in NASH and HCC patients. Taken collectively, c-Myc influences GPI-AP signaling transcriptionally and posttranslational and represses GPI-AP anti-proliferative signaling in tumors. The findings broaden the perspective of molecular targeted therapies and disease monitoring.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of GPLD1 in chronic diseases;Journal of Cellular Physiology;2023-07

2. Metabolism and immunity in breast cancer;Frontiers of Medicine;2020-10-19

3. Optimization of the optical transparency of rodent tissues by modified PACT-based passive clearing;Experimental & Molecular Medicine;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3