Face-to-Face Collisions of Bright and Dark Ion Acoustic Solitons in Superthermal Electrons for Different Geometrical Configurations

Author:

El-Shamy E.F.123,El-Bedwehy N.A.4,Shokry M.3,El-Labany S.K.3

Affiliation:

1. Research Center for Advanced Materials Science , King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia

2. Department of Physics , College of Science, King Khalid University , P.O. Box 9004 , Abha , Kingdom of Saudi Arabia

3. Department of Physics , Faculty of Science, Damietta University , New Damietta 34517 , Egypt

4. Department of Mathematics , Faculty of Science, Damietta University , New Damietta 34517 , Egypt

Abstract

Abstract The face-to-face collision of ion acoustic solitons (IASs) in superthermal plasmas composed of positive and negative ion fluids and superthermal electrons is investigated for different geometrical configurations. For the generic case, the extended Poincaré-Lighthill-Kuo (EPLK) analysis is employed to obtain the extended Korteweg-de Vries (EKdV) equations and phase shift equations. The non-linear propagation and the face-to-face collision of bright and dark IASs are studied. In addition, when the concentration of ion reaches the critical value, the EPLK method is applied to obtain the modified Korteweg-de Vries (mKdV) equations and the phase shift relations, which govern the excitation and the face-to-face collision of bright and dark IASs. Appropriately, the effects of several parameters such as the electron concentration, the superthermality of electrons and the diversity in the system’s geometry under consideration on the trajectories of IASs after the collision are discussed. Numerical calculations lead to some highlights on the properties of bright and dark IASs (e.g. in laboratory plasmas such as laser–matter/plasma interaction experiments and in astrophysical environments such as lower part of magnetosphere).

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3