Affiliation:
1. School of Materials and Energy Engineering, Guizhou Institute of Technology , Guiyang 550003 , China
Abstract
Abstract
In spite of the high electrical conductivity of carbon nanotube (CNT), its tendency to aggregate and expensive cost in fabricating aerogel, foams, and porous materials remains a problem. Therefore, we described a simple and feasible way to design light-weight, high electrically conductive, and cost-efficient polylactic acid (PLA)/CNT foams. The branched PLA (BPLA) resin with excellent melt elasticity and foamability was induced by nucleophilic ring-opening reaction of epoxy-based acrylic/styrene copolymer and PLA. After that, BPLA/CNT composites and foams were prepared by melt-mixing and supercritical carbon dioxide foaming technology, respectively. The thermal, electrical, and foaming properties were studied. The resultant BPLA/CNT foam possessed a low density of 0.174 g/cm3 and high crystallinity of 3.03%. An improvement of the oriented structure of CNT induced by cell growth in BPLA matrix increased the conductivity of the foam up to 3.51 × 104 Ω/m. The proposed foaming materials provided a way for designing and preparing high performance CNT products.
Subject
Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献