Silica/polymer core–shell particles prepared via soap-free emulsion polymerization

Author:

Ishihara Mina1,Kaeda Tomofumi1,Sasaki Takashi1

Affiliation:

1. Department of Materials Science and Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910 8507, Japan

Abstract

AbstractIn this study, core–shell particles were prepared as a hybrid material, in which a thin polymer shell was formed on the surface of the SiO2 sphere particles. The core–shell structure was successfully achieved without adding a surfactant via simple free-radical polymerization (soap-free emulsion polymerization) for various monomers of styrene, methyl methacrylate (MMA), and their derivatives. MMA formed thin homogeneous shells of polymer (PMMA) less than 100 nm in thickness with complete surface coverage and a very smooth shell surface. The obtained shell morphology strongly depended on the monomers, which suggests different shell formation mechanisms with respect to the monomers. It was found that the cross-linking monomer 1,4-divinylbenzene tends to promote shell formation, and the cross-linking reaction may stabilize the core–shell structure throughout radical polymerization. It should also be noted that the present method produced a considerable amount of pure polymer besides the core–shell particles. The glass transition temperatures of the obtained polymer shells were higher than those of the corresponding bulk materials. This result suggests strong interactions at the core–shell interface.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3