Affiliation:
1. China Aerospace Components Engineering Center, China Academy of Space Technology , Beijing , China
2. School of Materials Science and Engineering, Beijing Institute of Technology , Beijing , China
Abstract
Abstract
Four energetic binders, polyglycidyl nitrate (PGN), poly(3-nitratomethyl-3-methyloxetane) (PNIMMO), poly(bis(azidomethyl)oxetane) (PBAMO), and glycidyl azide polymer (GAP) were, respectively, mixed with dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50), forming TKX-50-based polymer bonded explosives (PBXs). Interfacial forces (binding energies) under different temperatures, mechanical properties (tensile modulus, bulk modulus, shear modulus, and Poisson’s ratio), and moldability of TKX-50-based PBXs were investigated by employing molecular dynamics simulation, the energy characteristics of TKX-50-based PBXs were calculated by Chapman–Jouguet (C–J) detonated theory. Results show that temperature has little effect on the binding energies, but the binding energies between every energetic binder and each surface of TKX-50 are different and the order of combined ability between four energetic binders and TKX-50 decrease as follows: PNIMMO > PBAMO > PGN > GAP. Compared with TKX-50, the addition of four energetic binders makes the rigidity of TKX-50-based PBXs decrease and the plasticity improve, the plastic ability rank is in the order of PGN > PNIMMO > PBAMO > GAP. In addition, the moldability of TKX-50-based PBXs is obviously improved, the increasing order is PGN > PNIMMO > PBAMO > GAP. Finally, the detonation performances indicate that compared with common binder, the addition of the energetic binder makes TKX-50-based PBXs have higher energy under the same condition.
Subject
Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献