Comparative study of crystallization and lamellae orientation of isotactic polypropylene by rapid heat cycle molding and conventional injection molding

Author:

Li Jiquan12,Yang Shaoguang1,Turng Lih-Sheng2,Zheng Wei1,Jiang Shaofei3

Affiliation:

1. 1College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. 2Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA

3. 3College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China, e-mail: jsf75@zjut.edu.cn

Abstract

AbstractThe crystallization and orientation of isotactic polypropylene (iPP) molded by rapid heat cycle molding (RHCM) and conventional injection molding (CIM) were studied. Due to the varying cooling rates and shearing, the molded parts exhibited a multilayered structure (skin, shear and core) across the part thickness, reflecting different degrees of crystallization and lamellae orientation of iPP. The morphology evolution of RHCM products was discussed based on the comparative research of morphology and structure at multiple sites on the RHCM and CIM specimens. Scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD) were used to analyze the thickness, crystallinity and lamellae orientation of these three distinct layers. The crystallization and lamellae orientation of iPP correlated strongly with the multilayered structure. In the RHCM process, one side of the mold is equipped with the rapid heat cycle function. The thickness and lamellae orientation next to the heated surface were less than that of the opposite skin layer without heating. Meanwhile, the crystallinity was greater than that of the opposite skin layer.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3