Effect of montmorillonite on PEBAX® 1074-based mixed matrix membranes to be used in humidifiers in proton exchange membrane fuel cells

Author:

Li Weiye1,Chang Zhihong1,Lin Liming1,Xu Xiaoyan1

Affiliation:

1. Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200092, China

Abstract

AbstractTo meet the increasing requirements of membrane humidification in proton exchange membrane fuel cells (PEMFCs), a series of montmorillonite (MMT)/PEBAX® 1074 mixed matrix membranes (MMMs) were fabricated using the solvent casting method. Pristine MMT and poly(oxyalkylene)amine (APOP)-modified MMT were added as the filler. Using the XRD, FT-IR, SEM, and TEM, the morphology and chemical structure of MMT during modification were investigated. Using the tests of water vapor permeability, air permeability, water contact angle, and crystallinity, the effects of montmorillonite on membrane properties were investigated. The results showed that surface hydrophilicity and crystallinity of MMMs increased as the MMT content increases, which leads to higher vapor permeability and selectivity than the pure PEBAX® 1074 membrane. After modification, APOP-MMT/PEBAX® 1074 MMMs showed better performance in vapor permeability and vapor/air selectivity. The best selectivity was 1.7 × 105, which is three times higher than that of pure PEBAX® 1074 membrane.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3