A wood-mimetic porous MXene/gelatin hydrogel for electric field/sunlight bi-enhanced uranium adsorption

Author:

Chen Lin1,Sun Ye1,Wang Jiawen1,Ma Chao1,Peng Shuyi1,Cao Xingyu1,Yang Lang1,Ma Chunxin12,Duan Gaigai3,Liu Zhenzhong2,Wang Hui1,Yuan Yihui1,Wang Ning1

Affiliation:

1. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China

2. Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China

3. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China

Abstract

Abstract Although diverse uranium (U) adsorbents have been explored, it is still a great challenge for high-efficient uranium extraction form seawater. Herein a wood-mimetic oriented porous Ti3C2T x -MXene/gelatin hydrogel (MGH) has been explored through growing directional ice crystals cooled by liquid nitrogen and subsequently forming pores by freeze-dry (Ice-template) method, for ultrafast and high-efficient U-adsorption from seawater with great enhancement by both electric field and sunlight. Different from disperse Ti3C2T x -MXene powder, this MGH not only can be easily utilized but also can own ultrahigh specific surface area for high-efficient U-adsorption. The U-adsorbing capacity of this MGH (10 mg) can reach 4.17 mg·g−1 after only 1 week in 100 kg of seawater, which is outstanding in existing adsorbents. Furthermore, on the positive pole of 0.4 V direct current source or under 1-sun irradiation, the U-adsorbing capacity of the MGH can increase by 57.11% and 13.57%, respectively. Most importantly, the U-adsorption of this hydrogel can be greatly enhanced by simultaneously using the above two methods, which can increase the U-adsorbing capacity by 79.95% reaching 7.51 mg·g−1. This work provides a new biomimetic porous MXene-based hydrogel for electric field/sunlight bi-enhanced high-efficient U-extraction from seawater, which will inspire new strategy to design novel U-adsorbents and systems.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3