Strain rate and temperature effects on elastic properties of polycaprolactone/starch composite

Author:

Nor Fethma M.1,Lee Ho Yong1,Lim Joong Yeon1,Kurniawan Denni

Affiliation:

1. 1Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul, Korea

Abstract

AbstractComposite of polycaprolactone (PCL) and starch is a potential biomaterial for tissue engineering scaffolds. During implantation, its mechanical properties might be compromised considering the various strain rates it is subjected to and that human body temperature is close to polycaprolactone’s melting temperature. This study aims at revealing the effect of strain rate and temperature to the elastic properties of polycaprolactone-starch composite. Tensile test at strain rates of 5, 0.1, and 0.01 mm/min at ambient and body temperatures were performed. It was revealed that strain rate as well as temperature readily have significant effects on the composite’s elastic properties. Such effects have similar trends with that of PCL homopolymer which is used as the composite’s matrix. Further analysis on the consequence of the finding was performed by applying the behavior to a finite element model of a porous scaffold and it was found that the discrepancy in elastic properties throughout the construct is even greater.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3