Affiliation:
1. College of Materials Science and Engineering, Xian University of Science and Technology , Xi’an , 710054 , China
2. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University , Xi’an , 710049 , China
Abstract
Abstract
To investigate the potential applications of bio-based epoxy resins across diverse fields, this study synthesized a bio-based epoxy resin using itaconic acid (EIA) as the precursor material and compared its thermal, mechanical, and electrical properties with those of epoxy acrylate (EA). The findings indicate that the glass transition temperature and the 5% thermal decomposition temperature of the EIA-cured system are higher than those of EA. The breakdown field strength of the EIA-cured system is slightly higher than that of EA (35.58 kV·mm−1), suggesting that EIA exhibits stronger electrical properties compared to EA. Mechanical property tests demonstrate that the tensile strength, elongation at the fracture point, and Shore hardness of the EIA-cured system are superior to those of EA. In conclusion, EIA, serving as a matrix resin, is influenced by cross-linking density and intramolecular ester bonding and exhibits close electrical strength but superior mechanical, thermal, and degradation properties than EA.