Preparation and adsorption properties of Ni(ii) ion-imprinted polymers based on synthesized novel functional monomer

Author:

Zhao Li1,Hu Xianzhi1,Zi Futing1,Liu Yingmei1,Hu Deqiong1,Li Peng1,Cheng Huiling1

Affiliation:

1. Faculty of Science, Kunming University of Science and Technology , Kunming 650500 , China

Abstract

Abstract In this study, a novel functional monomer N-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethyl)acrylamide (NDTEA) was designed and synthesized, and was used to prepare Ni(ii) ion-imprinted polymers (Ni(ii)-IIPs). Sixteen kinds of Ni(ii)-IIP (Ni(ii)-IIP1–16) and corresponding non-imprinted polymers (NIP1–16) were prepared by precipitation polymerization method. After optimized condition experiment, Ni(ii)-IIP5 possessed maximum adsorption capacity and better imprinting factor under optimal experimental conditions which indicated by equilibrium adsorption experiments. The morphology and structural characteristics of Ni(ii)-IIP5 were characterized by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET). The adsorption selectivity of Ni(ii)-IIP5 was analyzed by ICP-OES, and the results showed that Ni(ii)-IIP5 had favorable selectivity recognition ability for Ni(ii) when Cu(ii), Co(ii), and Cd(ii) are used as competitive ions. The kinetic experiment indicated that the performance of Ni(ii) adsorption on the surface of Ni(ii)-IIP5 obeyed the pseudo-first-order model, and adsorption equilibrium was attained after 15 min. Isothermal adsorption process fitted to Langmuir and Freundlich isothermal adsorption models, simultaneously. The results showed that Ni(ii)-IIP5 prepared by using a new functional monomer had better permeation selectivity and higher affinity for Ni(ii), which also verified the rationality of the functional monomer design. At the same time, it also provided a broad application prospect for removal of Ni(ii) in complex samples.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3