Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters

Author:

Ramesh Manickam1,Niranjana Kanakaraj2,Bhoopathi Ramasamy3,Rajeshkumar Lakshminarasimhan4

Affiliation:

1. Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology , Coimbatore , 641402, Tamil Nadu , India

2. Department of Aeronautical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology , Coimbatore , 641402, Tamil Nadu , India

3. Department of Mechanical Engineering, Sri Sairam Engineering College , Chennai , 600045, Tamil Nadu , India

4. Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University , Bengaluru , 562106, Karnataka , India

Abstract

Abstract In recent years, additive manufacturing (AM) has seen extensive exploitation in the research areas for the processing of fiber-reinforced polymer composites (FRPCs). Existing reviews on AM have recommended either sustainable production methods or have introduced new processing methodologies. A relationship between materials used, manufacturing processes, process parameters, and their properties is essential in any manufacturing process. Accordingly, this review focuses on the manufacturing of FRPCs in relation to process parameters and properties of the polymer composites. Various studies dealt with the lightweight materials and parts that were manufactured through AM and which could retain the mechanical and other properties without compromising the strength and weight of the final product. The technologies involved in the major AM processes and the constituents used for the fabrication of FRPC parts, their advantages, and drawbacks are also deliberated. This review combines the material selection for AM technologies along with the choice of proper AM technique for printing FRPCs. This review further illustrates the recent research and technology that aims at embracing FRPCs into a circular economy. In summary, this review opens the door for new opportunities and for meeting challenges in the manufacturing of FRPCs by AM methodologies.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3