Affiliation:
1. Department of Engineering Mechanics, School of Mechanical Engineering and Mechanics, Xiangtan University , Xiangtan 411105 , China
2. Department of Material Science and Engineering, College of Aerospace Science and Technology, National University of Defense Technology , Changsha 410073 , China
Abstract
Abstract
To enhance the mechanical properties of the Nitrate Ester Plasticized Polyether solid propellant matrix, the uniaxial tension of multi-component systems is simulated and the factors influencing the mechanical properties of the propellant matrix are investigated. First, mesoscale models of five types of systems include poly alpha olefin (PAO(3)), polyethylene glycol (PEG200, PEG400, PEG600), and 1,4-butanediol (BDO) are established, followed by uniaxial tensile simulations. The results show PEG600, PEG400, PEG200, BDO, and PAO(3) in order of enhancing the mechanical performance of the matrix. Second, the diffusion behavior of nitroglycerin (NG) and butanetriol trinitrate (BTTN) in various systems is investigated. The results show that NG exhibits higher diffusion capacity than BTTN, and the diffusion coefficient increases with an increment in the molecular weight of PEG. Additionally, the influence of different plasticizer ratios (2.8–3.0), curing parameters (1.58–1.62), and chain extension parameters (0.08–0.10) on the mechanical properties of the PEG600 system are investigated. The results demonstrate that as the plasticizer ratio increases, there is a gradual decrease in the modulus of the matrix. Additionally, an increase in the curing parameter leads to a substantial enhancement in the tensile strength of the matrix, while increasing the chain extension parameter significantly expands the maximum tensile length of the matrix. Finally, employing the Slip-Spring model, the effects of the physical and chemical cross-linked network of the propellant are simulated. The result shows that increasing the content of a chemical cross-linked network significantly improves the tensile strength of the matrix.