Variation in tungsten(vi) oxide particle size for enhancing the radiation shielding ability of silicone rubber composites

Author:

Aloraini Dalal A.1,Almuqrin Aljawhara H.1,Sayyed M. I.23,Elsafi Mohamed4

Affiliation:

1. Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia

2. Department of Physics, Faculty of Science, Isra University , Amman , Jordan

3. Renewable Energy and Environmental Technology Center, University of Tabuk , Tabuk 47913 , Saudi Arabia

4. Physics Department, Faculty of Science, Alexandria University , 21511 Alexandria , Egypt

Abstract

Abstract In this work, the attenuation properties of silicon rubber (SR) composites reinforced by both micro- and nano-sized Tungsten trioxide (WO3) particles are studied. Different SR composites with different combinations of micro-WO3 and nano-WO3 have been prepared. The main composite, SR-(WO3)60m (40% SR containing 60% micro-WO3), and other compositions were prepared by replacing percentages of microparticles with nanoparticles of WO3. The linear attenuation coefficient for these composites was measured in the range of 0.06–1.333 MeV. The existence of micro and nanoparticles together may result in enhanced interactions with incoming photons, leading to greater shielding. In other words, micro-WO3 and nano-WO3 have various sizes and surface areas. At 0.06 MeV, we notice a distinguished decrease in the half value layer (HVL) from SR-W60m to SR-W60n. The sequence of reducing HVL values (SR-(WO3)60m > SR-(WO3)60n > SR-(WO3)40m20n > SR-(WO3)20m40n > SR-(WO3)30m30n) suggest that the inclusion of both micro- and nano-WO3 contributes to more efficient radiation shielding compared to the reference material. The radiation shielding efficiency (RSE) for SR-(WO3)30m30n at 0.662 MeV is 38.40%. This means that if a beam of photons with energy of 0.662 MeV interacts with SR-W40m20n sample, only 38.12% of the photons are successfully absorbed or stopped, whereas the remaining 61.88% can pass through this sample. At 1.333 MeV, the lowest RSE is observed, which means that the prepared composites have weak attenuation ability at higher energy levels.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3